Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

Client:	Premier		Service Reques			
Project:	Λ \	SINS	Bolvioo requo	()		
Cooler rece	7 -1(106	and opened on	9/20/06	by Ta	014
COURIER		FEDEX	DHL CLIENT	Tracking #		
1	Were custody seals on	outside of co	oler?		Yes No	N/A
2	Were seals intact, sign	ed and dated?	,		Yes No	N/A
3	Were custody papers p	properly filled	out?	. ~ (Yes No	N/A
4	Temperature of cooler(s) u	pon receipt	(Should be 4 +/- 2 degrees C)	(./		
5	Correct Temperature?			(Yes No	N/A
6	Were Ice or Ice Packs	present			Yes No	N/A
7	Did all bottles arrive in	n good condit	ion (unbroken, etc)?		Yes No	N/A
8	Were all bottle labels	complete (san	nple ID, preservation, et	c)? (Yes No	N/A
9	Did all bottle labels an	d tags agree v	with custody papers?	(Yes No	N/A
10	Were the correct bottle	es used for the	e tests indicated?	1	Yes No	N/A
11	Were all of the preserved b	ottles received v	vith the appropriate preservat	tive?	Yes No	N/A
12	HNO3 pH<2 H2SO4 p Preservative additions noted below Were all samples received.	w	2/NaOH pH>9 NaOH pl	12 ACI	pH<2 Yes No	o N/A
13	•				Yes No	
14	Where did the bottles		bubbles? If present, note be	iow /		ient
17	Where did the bottles	originate:			CAS CI	iont
			Manuf. Lot # or CAS			
	Sample ID	Reagent	Chem ID	ml added	Inititia	ls
	0 minpro 12	1				
Additional	comments and/or explan	nation of all d	iscrepancies noted abov	e:		

SR#: J

Date: 9/20/06 Initials: TM

Note that pH is checked and meets the required pH criterion listed in the column heading unless otherwise-noted on booler receipt form.

	30	Misc.	Misc.		N/A					Γ	Γ	Γ	T	T	T	T	T	I	T	T																											
		- 1		Sodium	N/A	-																																									
	-		ENC		Y.	1								T	T	T	T	1	1																												
	27		9		A/A	1						r	T	-		T			1	1																											
	25 26		9		N/A		-	_		-				I																																	
	24 25		0		N/A N/A N/A					_	-	-	-	-		1		+	-	-																											
		-	9	0	ž	-	-				+	-	+	+	+	+	+	+	+	+					-		-																		-		
1		11		HZS	<2 <2	-								1	1	1	1	1	1	-																											-
- 1	- 1		0	HC	A <2									1		1	1	1	1	1																_											
		-	9	EONH	2 N.E	+	-	-	-	-	-	-	+	+	+	+	+	+	+	+	-		_	-																							-
		-	٩	Ξ	N/A <	-				-	-	-	+	+	+	+	+	+	+	+	+	-		-			_		_					-													-
			۵	03	2 N	1							+	\dagger	+	t			+	+	1																										-
1	-	JL 500	-	H T	ľ	+	_			_	\vdash	-	-	+	+	+	+		+	+	1		_										-	-	-												
	17	500mL 500mL 500mL	۵	H2S(2 2	1					L	L							1																												
	16	500ml	ما		N/A														1																												
	15	50mL	9	HNO3	42											1			1																												
Code	14	50mL	9		N/A							T		1	T	T	1		1	1																											
Bottle Code	13	250mL 250mL 250mL	a		>12						-		\dagger	+	T	+	+	+	1	1																					-						
		. 1		ZnAcetate NaOH	. 6<									-			1		1																												
-	- 1	- 1	7	2 Zu Z		-						-	-	+		+	+	+	+	+	-	-													-										-		_
-	1	250mL 250mL	۵	H HNC	\$						-	L		-	-	-	1	-	-																												
	10	250m	۵	H2SO	<2 <2																																										
	6	211	۵		A/A																																										
	8	125mL	ما	HNO3	3											-																															
	7	125mL 125mL 2	а	H2S04	2 2												I		1																		64										
	9	Sml	۵	- 5	\$							T	T	T		1		1	1	1																											
	2	L 125mL 12	a.		N/A							T		1	T	T	1	T	1	1																											
	4	40mL	9	12504	3	-									1	T	1		1	1																											
	-		9	Sodium Thiosulfate H	N/A: <2							-		1		T	+	1	1	1	1																										
-			9	의 구	<2>	-				-	-	-	+	+	+	-	+	+	+	+	-	-		-	+			-					+	-		-			-						+		-
-	-	7	9		N/A	+				-			+	+	1	+	+	+	1	+	1	1			1	1																			1		
			Container			Sample #	-00-	-005	-003	-00-	-005	-00	-00-	- 6	800		2 ;	-1-	-012	-013	-014	-015	-016	-017	-018	-019	-020	-021	-022	-023	-024	-025	-026	-027	-028	-029	-030	-031	-032	-033	-034	-035	-036	-037	-038	-039	-040

CHAIN OF CUSTODY/LABORATORY NALYSIS REQUEST FORM

8540 Baycenter Rd. • Jacksonville, FL 32256 • (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011

PAGE

		Preservative ney 0. NONE 1. HCL 2. HNO3	3. H2SQ4 4. NaOH 5. Zn. Acetate 6. MeOH		REMARKS/							INVOICE INFORMATION		PO#	BILL TO:					RECEIVED BY	Signature	Printed Name	Firm	Date/Time	SCOC-01/12/06-07
ANALYSIS REQUESTED (Include Method Number and Co.												REPORT REQUIREMENTS	I. Results Only	II. Results + QC Summaries (LCS, DUP, MS/MSD as required)	noise the open the op	Summaries	IV. Data Validation Report with Raw Data	V. Speicalized Forms / Custom Report	Edata Yes No	RELINQUISHED BY	Signature	Printed Name	Firm	Date/Time	
ANALYSIS REQUESTED (PRESERVATIVE	N. C.	Airah	(4)	THE STATE OF THE S		*	×	×			TURNAROUND REQUIREMENTS	HUSH (SUNCHANGES APPLY)	STANDARD	REQUESTED FAX DATE		REQUESTED REPORT DATE		z	RECEIVED BY	Signature	Printed Name	Firm	Date/Time	
201008.01	USC.COM		20 20 20 20 20 20 20 20 20 20 20 20 20 2	3.7385	P.II. Feer	SAMPLING DATE TIME MATRIX		1 4:04	4:12										CUSTODY SEALS: Y	RELINQUISHED BY	Signature		Firm	8.05 appertine	
	Project Manager Projec	1880 W	Mr. th. 69 30062	973-2100 FAX#	Miles Sample	CLIENT SAMPLE ID	SW	6F	7W			SPECIAL INSTRUCTIONS/COMMENTS	KUST ALVERS			6			ITION/COOLER TEMP:	RELINQUISHED BY RECEIVED BY	26 Menature	Pollitzer Therename	Premier Env	PM Date 7/20/06	אר - Retaine

Client:

Premier Environmental Services

Service Request No.:

J0604558

Project:

IP Wiggins

Date Received:

9/22/06

Sample Matrix:

soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

Sample Receipt

4 soil samples were received for analysis at Columbia Analytical Services on 9/22/06. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 4 ± 2 °C upon receipt at the lab.

PAHs and PCP by GC-MS SIM

No problems were observed with this delivery group.

Approved by Jan D. Mussing Pate 9/25/06

Data Qualifiers

Inorganic Data

- * The result is an outlier. See case narrative.
- # The control limit criteria are not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimated amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.
- i The MRL/MDL has been elevated due to matrix interference.
- X See case narrative.

Metals Data

- * The result is an outlier. See case narrative.
- # The control limit criteria are not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E. The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The result was determined by Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data

- * The result is an outlier. See case narrative.
- # The control limit criteria are not applicable. See case narrative.
- A The tentatively identified compound is a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria were exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides)
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Petroleum Hydrocarbon Specific

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance allowed in

drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to

the MDL.

Client:

Premier Environmental Services

Project:

IP Wiggins/202008.01

Service Request: J0604558

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
J0604558-001	8W	09/21/06	13:55
J0604558-002	9F	09/21/06	14:05
J0604558-003	10W	09/21/06	14:15
J0604558-004	11W	09/21/06	14:28

Analytical Results

Client:

Premier Environmental Services

Project: Sample Matrix: IP Wiggins/202008.01

Soil

Service Request: J0604558

Date Collected: 09/21/2006

Date Received: 09/22/2006

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

8W

Lab Code:

J0604558-001

Extraction Method:

EPA 3550

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	4.0	0.60	1	09/22/06	09/23/06	JWG0602976	
2-Methylnaphthalene	ND	U	4.0	1.8	1	09/22/06	09/23/06	JWG0602976	
1-Methylnaphthalene	ND	U	4.0	1.3	1	09/22/06	09/23/06	JWG0602976	
Acenaphthylene	ND	U	7.9	3.1	1	09/22/06	09/23/06	JWG0602976	
Acenaphthene	ND	U	7.9	3.2	1	09/22/06	09/23/06	JWG0602976	
Fluorene	ND	U	4.0	1.8	1	09/22/06	09/23/06	JWG0602976	
Pentachlorophenol	ND	U	40	0.82	1	09/22/06	09/23/06	JWG0602976	
Phenanthrene	ND	U	7.9	3.9	1	09/22/06	09/23/06	JWG0602976	
Anthracene	ND	U	4.0	0.71	1	09/22/06	09/23/06	JWG0602976	
Fluoranthene	ND	U	4.0	0.69	1	09/22/06	09/23/06	JWG0602976	
Pyrene	ND	U	4.0	0.61	1	09/22/06	09/23/06	JWG0602976	
Chrysene	ND	U	4.0	0.56	1	09/22/06	09/23/06	JWG0602976	
nz(a)anthracene	ND	U	4.0	0.58	1	09/22/06	09/23/06	JWG0602976	
nzo(b)fluoranthene	ND	U	4.0	0.93	1	09/22/06	09/23/06	JWG0602976	
Benzo(k)fluoranthene	ND	U	4.0	0.76	1	09/22/06	09/23/06	JWG0602976	,
Benzo(a)pyrene	ND	U	4.0	1.3	1	09/22/06	09/23/06	JWG0602976	
Indeno(1,2,3-cd)pyrene	ND	U	4.0	1.1	1	09/22/06	09/23/06	JWG0602976	
Dibenz(a,h)anthracene	ND	U	4.0	0.60	1	09/22/06	09/23/06	JWG0602976	
Benzo(g,h,i)perylene	ND	U	4.0	0.76	1	09/22/06	09/23/06	JWG0602976	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorobiphenyl	61	30-118	09/23/06	Acceptable
2,4,6-Tribromophenol	77	34-166	09/23/06	Acceptable
p-Terphenyl-d14	73	41-146	09/23/06	Acceptable

comments:

Printed: 09/25/2006 12:14:06

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client: Project: Premier Environmental Services

Sample Matrix:

IP Wiggins/202008.01

Soil

Service Request: J0604558 Date Collected: 09/21/2006

Date Received: 09/22/2006

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

9F

Lab Code:

J0604558-002

Extraction Method:

EPA 3550

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result	o	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND		4.0	0.59	1	09/22/06	09/23/06	JWG0602976	
2-Methylnaphthalene	ND	U	4.0	1.8	1	09/22/06	09/23/06	JWG0602976	
1-Methylnaphthalene	ND	U	4.0	1.3	. 1	09/22/06	09/23/06	JWG0602976	
Acenaphthylene	ND	U	7.9	3.1	1	09/22/06	09/23/06	JWG0602976	
Acenaphthene	ND	U	7.9	3.2	1	09/22/06	09/23/06	JWG0602976	
Fluorene	ND	U	4.0	1.8	1	09/22/06	09/23/06	JWG0602976	
Pentachlorophenol	3300	D	400	8.1	10	09/22/06	09/25/06	JWG0602976	
Phenanthrene	ND	U	7.9	3.9	1	09/22/06	09/23/06	JWG0602976	
Anthracene	ND	U	4.0	0.71	1	09/22/06	09/23/06	JWG0602976	
Fluoranthene	· ND	U	4.0	0.69	1	09/22/06	09/23/06	JWG0602976	
Pyrene	ND	U	4.0	0.61	1	09/22/06	09/23/06	JWG0602976	
Chrysene	ND	U	4.0	0.56	1	09/22/06	09/23/06	JWG0602976	
Penz(a)anthracene	ND	U	4.0	0.58	1	09/22/06	09/23/06	JWG0602976	
nzo(b)fluoranthene	ND	U	4.0	0.93	1	09/22/06	09/23/06	JWG0602976	
Benzo(k)fluoranthene	ND	U	4.0	0.76	1	09/22/06	09/23/06	JWG0602976	
Benzo(a)pyrene	ND	U	4.0	1.3	1	09/22/06	09/23/06	JWG0602976	
Indeno(1,2,3-cd)pyrene	ND	U	4.0	1.1	1	09/22/06	09/23/06	JWG0602976	
Dibenz(a,h)anthracene	ND	U	4.0	0.59	1	09/22/06	09/23/06	JWG0602976	
Benzo(g,h,i)perylene	ND	U	4.0	0.76	1	09/22/06	09/23/06	JWG0602976	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorobiphenyl	66	30-118	09/23/06	Acceptable	
2,4,6-Tribromophenol	87	34-166	09/23/06	Acceptable	
p-Terphenyl-d14	74	41-146	09/23/06	Acceptable	

mments:

Printed: 09/25/2006 12:14:09

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

SuperSet Reference: RR13420

Analytical Results

Client:

Premier Environmental Services

Project: Sample Matrix: IP Wiggins/202008.01

Soil

Service Request: J0604558

Date Collected: 09/21/2006

Date Received: 09/22/2006

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

10W

Lab Code:

J0604558-003

Extraction Method:

EPA 3550

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

	•				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	4.0	0.59	1	09/22/06	09/23/06	JWG0602976	
2-Methylnaphthalene	ND	U	4.0	1.8	1	09/22/06	09/23/06	JWG0602976	
1-Methylnaphthalene	ND	U	4.0	1.3	1	09/22/06	09/23/06	JWG0602976	
Acenaphthylene	ND	U	7.9	3.0	1	09/22/06	09/23/06	JWG0602976	
Acenaphthene	ND	U	7.9	3.1	1	09/22/06	09/23/06	JWG0602976	
Fluorene	ND	U	4.0	1.8	1	09/22/06	09/23/06	JWG0602976	
Pentachlorophenol	3.3	J	40	0.81	1	09/22/06	09/23/06	JWG0602976	
Phenanthrene	ND	U	7.9	3.8	1	09/22/06	09/23/06	JWG0602976	
Anthracene	ND	U	4.0	0.71	1	09/22/06	09/23/06	JWG0602976	
Fluoranthene	ND	U	4.0	0.68	1	09/22/06	09/23/06	JWG0602976	
Pyrene	ND	U	4.0	0.60	1	09/22/06	09/23/06	JWG0602976	
Chrysene	ND	U	4.0	0.56	1	09/22/06	09/23/06	JWG0602976	
nz(a)anthracene	ND	U	4.0	0.58	1	09/22/06	09/23/06	JWG0602976	
enzo(b)fluoranthene	ND	U	4.0	0.92	1	09/22/06	09/23/06	JWG0602976	
Benzo(k)fluoranthene	ND	U	4.0	0.75	1	09/22/06	09/23/06	JWG0602976	
Benzo(a)pyrene	ND	U	4.0	1.3	1	09/22/06	09/23/06	JWG0602976	
Indeno(1,2,3-cd)pyrene	ND	U	4.0	1.0	1	09/22/06	09/23/06	JWG0602976	
Dibenz(a,h)anthracene	ND	U	4.0	0.59	1	09/22/06	09/23/06	JWG0602976	
Benzo(g,h,i)perylene	ND	U	4.0	0.75	1	09/22/06	09/23/06	JWG0602976	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorobiphenyl	57	30-118	09/23/06	Acceptable
2,4,6-Tribromophenol	73	34-166	09/23/06	Acceptable
p-Terphenyl-d14	71	41-146	09/23/06	Acceptable

Comments:

Printed: 09/25/2006 12:14:11

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

SuperSet Reference:

RR13420

Analytical Results

Client: Project: Premier Environmental Services

IP Wiggins/202008.01

Sample Matrix:

Soil

Service Request: J0604558

Date Collected: 09/21/2006

Date Received: 09/22/2006

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

11W

Lab Code:

J0604558-004

Extraction Method: Analysis Method:

EPA 3550

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	3.9	0.59	1	09/22/06	09/23/06	JWG0602976	
2-Methylnaphthalene	ND	U	3.9	1.8	1	09/22/06	09/23/06	JWG0602976	
1-Methylnaphthalene	ND	.U	3.9	1.3	1	09/22/06	09/23/06	JWG0602976	
Acenaphthylene	ND	U	7.8	3.0	1	09/22/06	09/23/06	JWG0602976	
Acenaphthene	ND	U	7.8	3.1	1	09/22/06	09/23/06	JWG0602976	
Fluorene	ND	U	3.9	1.8	1	09/22/06	09/23/06	JWG0602976	
Pentachlorophenol	12	J	39	0.80	1	09/22/06	09/23/06	JWG0602976	
Phenanthrene	ND	U	7.8	3.8	1	09/22/06	09/23/06	JWG0602976	
Anthracene	ND	U	3.9	0.70	1	09/22/06	09/23/06	JWG0602976	
Fluoranthene	ND	U	3.9	0.68	1	09/22/06	09/23/06	JWG0602976	
Pyrene	ND	U	3.9	0.60	1	09/22/06	09/23/06	JWG0602976	
Chrysene	ND	U	3.9	0.55	1	09/22/06	09/23/06	JWG0602976	
nz(a)anthracene	ND	U	3.9	0.58	1	09/22/06	09/23/06	JWG0602976	
nzo(b)fluoranthene	ND	U	3.9	0.92	1	09/22/06	09/23/06	JWG0602976	
Benzo(k)fluoranthene	ND	U	3.9	0.75	1	09/22/06	09/23/06	JWG0602976	
Benzo(a)pyrene	ND	U	3.9	1.3	1	09/22/06	09/23/06	JWG0602976	
Indeno(1,2,3-cd)pyrene	ND	U	3.9	1.0	1	09/22/06	09/23/06	JWG0602976	
Dibenz(a,h)anthracene	ND	U	3.9	0.59	1	09/22/06	09/23/06	JWG0602976	
Benzo(g,h,i)perylene	ND	U	3.9	0.75	1	09/22/06	09/23/06	JWG0602976	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorobiphenyl	62	30-118	09/23/06	Acceptable	
2,4,6-Tribromophenol	75	34-166	09/23/06	Acceptable	
p-Terphenyl-d14	70	41-146	09/23/06	Acceptable	

mments:

Printed: 09/25/2006 12:14:14

 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

1 of 1

SuperSet Reference: RR13420

Analytical Results

Client:

Premier Environmental Services

Project: Sample Matrix: IP Wiggins/202008.01

Soil

Service Request: J0604558

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank JWG0602976-4

Extraction Method: EPA 3550

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	3.4	0.51	1	09/22/06	09/23/06	JWG0602976	
2-Methylnaphthalene	ND	U	3.4	1.5	1	09/22/06	09/23/06	JWG0602976	
1-Methylnaphthalene	ND	U	3.4	1.1	1	09/22/06	09/23/06.	JWG0602976	
Acenaphthylene	ND	U	6.8	2.6	1	09/22/06	09/23/06	JWG0602976	
Acenaphthene	ND	U	6.8	2.7	1	09/22/06	09/23/06	JWG0602976	
Fluorene	ND	U	3.4	1.5	1	09/22/06	09/23/06	JWG0602976	
Pentachlorophenol	ND	U	34	0.70	1	09/22/06	09/23/06	JWG0602976	
Phenanthrene	ND	U	6.8	3.3	1	09/22/06	09/23/06	JWG0602976	
Anthracene	ND	U	3.4	0.61	1	09/22/06	09/23/06	JWG0602976	
Fluoranthene	ND	U	3.4	0.59	1	09/22/06	09/23/06	JWG0602976	
Pyrene	ND	U	3.4	0.52	1	09/22/06	09/23/06	JWG0602976	
Chrysene	ND	U	3.4	0.48	1	09/22/06	09/23/06	JWG0602976	
¬¬nz(a)anthracene	ND	U	3.4	0.50	1	09/22/06	09/23/06	JWG0602976	
nzo(b)fluoranthene	ND	U	3.4	0.80	1	09/22/06	09/23/06	JWG0602976	
Benzo(k)fluoranthene	ND	U	3.4	0.65	1	09/22/06	09/23/06	JWG0602976	
Benzo(a)pyrene	ND	U	3.4	1.1	1	09/22/06	09/23/06	JWG0602976	
Indeno(1,2,3-cd)pyrene	ND	U	3.4	0.87	1	09/22/06	09/23/06	JWG0602976	
Dibenz(a,h)anthracene	ND	U	3.4	0.51	1	09/22/06	09/23/06	JWG0602976	
Benzo(g,h,i)perylene	ND	U	3.4	0.65	1	09/22/06	09/23/06	JWG0602976	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorobiphenyl	60	30-118	09/23/06	Acceptable	
2,4,6-Tribromophenol	74	34-166	09/23/06	Acceptable	
p-Terphenyl-d14	73	41-146	09/23/06	Acceptable	

anments:

Printed: 09/25/2006 12:14:16

p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

1 of 1

SuperSet Reference: RR13420

Analytical Report

Premier Environmental Services

IP Wiggins

Project Name: Project Number :

202008.01

Sample Matrix:

SOIL

Service Request: J0604558

Date Collected: 09/21/06

Date Received: 09/22/06

Solids, Total

Units: PERCENT

Basis: NA

Analysis Method: 160.3 MOD

Test Notes:

Sample Name	Lab Code	MRL	MDL	Dilution Factor	• .	Date/Time Analyzed	Result	Result Notes
8W	J0604558-001	0.1	0.1	1		09/22/06 18:00	86	
9F	J0604558-002	0.1	0.1	1		09/22/06 18:00	87	
10W	J0604558-003	0.1	0.1	1		09/22/06 18:00	87	
11W .	J0604558-004	0.1	0.1	I		09/22/06 18:00	88	

QA/QC Report

Client:

Premier Environmental Services

Project: Sample Matrix: IP Wiggins/202008.01

Soil

Service Request: J0604558

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 3550

Units: PERCENT

Level: Low

Analysis Method: 8270C SIM

Lab Code	Sur1	Sur2	Sur3
J0604558-001	61	77	73
J0604558-002	66	87	74
J0604558-003	57	73	71
J0604558-004	62	75	70
JWG0602976-4	60	74	73
JWG0602976-1	72	89	78
JWG0602976-2	74	89	78
JWG0602976-3	72	85	77
	J0604558-001 J0604558-002 J0604558-003 J0604558-004 JWG0602976-4 JWG0602976-1 JWG0602976-2	J0604558-001 61 J0604558-002 66 J0604558-003 57 J0604558-004 62 JWG0602976-4 60 JWG0602976-1 72 JWG0602976-2 74	J0604558-001 61 77 J0604558-002 66 87 J0604558-003 57 73 J0604558-004 62 75 JWG0602976-4 60 74 JWG0602976-1 72 89 JWG0602976-2 74 89

Surrogate Recovery Control Limits (%)

Sur1 = 2-Fluorobiphenyl	30-118
Sur2 = 2,4,6-Tribromophenol	34-166
Sur3 = p-Terphenyl-d14	41-146

results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/25/2006 12:14:23

p:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference: RR13420

QA/QC Report

Client:

Premier Environmental Services

Project: Sample Matrix: IP Wiggins/202008.01

Soil

Service Request: J0604558

Date Extracted: 09/22/2006

Date Analyzed: 09/23/2006

Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

8W

Lab Code:

J0604558-001

Extraction Method:

EPA 3550

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: JWG0602976

	Sample		8WMS 7G0602976-1 Matrix Spike	l 		8WDMS /G0602976-2 cate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	ND	125	193	65	128	193	67	41-106	3	30
2-Methylnaphthalene	ND	140	193	72	142	193	73	45-111	1	30
1-Methylnaphthalene	ND	128	193	66	130	193	67	37-116	2	· 30
Acenaphthylene	ND	133	193	69	134	193	70	37-130	1	30
Acenaphthene	ND	138	193	71	141	193	73	27-123	3	30
Fluorene	ND	142	193	74	144	193	75	37-128	1	30
Pentachlorophenol	ND	202	193	105	204	193	106	50-150	1	30
Phenanthrene	ND	142	193	74	142	193	. 74	13-148	0	30
Anthracene	ND	120	193	62	116	193	60	13-148	4	30
oranthene	ND	145	193	75	145	193	75	39-138	0	30
ryrene	ND	144	193	75	145	193	75	28-158	0	30
Chrysene	ND	144	193	74	144	193	75	27-135	0	30
Benz(a)anthracene	ND	153	193	80	154	193	80	12-159	0	30
Benzo(b)fluoranthene	ND	180	193	93	183	193	95	18-150	2	30
Benzo(k)fluoranthene	ND	149	193	77	152	193	79	10-177	1	30
Benzo(a)pyrene	ND	139	193	72	135	193	70	22-138	3	30
Indeno(1,2,3-cd)pyrene	ND	141	193	73	138	193	72	20-144	2	30
Dibenz(a,h)anthracene	ND	139	193	72	141	193	73	34-126	2	30
Benzo(g,h,i)perylene	, ND	130	193	67	128	193	66	10-174	1	30

lts flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/25/2006 12:14:27 $p:\Stealth\Crystal.rpt\Form3DMS.rpt$

QA/QC Report

Client:

Premier Environmental Services

Project: Sample Matrix: IP Wiggins/202008.01

Soil

Service Request: J0604558

Date Extracted: 09/22/2006

Date Analyzed: 09/23/2006

Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: Analysis Method:

EPA 3550

8270C SIM

Units: ug/Kg

Basis: Dry

Level: Low Extraction Lot: JWG0602976

Lab Control Sample JWG0602976-3 Lab Control Spike

Result	Expected	%Rec	%Rec Limits		
	1.77				
	167	67	30-112		
121	167	73	30-118		
111	167	67	32-114		
112	167	67	27-124		
118	167	71	26-119		
122	167	73 .	30-125		
164	167	98	16-140		
120	167	72	32-119		
97.3	167	58	31-105		
124	167	74	35-131		
122	167	73	30-136		
122	167	73	44-120		
129	167	77	40-125		
157	167	94	43-130		
136	167	82	47-123		
116	167	69	29-104		
128	167	77	40-124		
131	167	78 ·	45-125		
121	167	72	42-121		
	121 111 112 118 122 164 120 97.3 124 122 122 129 157 136 116 128 131	121 167 111 167 112 167 118 167 122 167 164 167 120 167 97.3 167 124 167 122 167 129 167 157 167 136 167 116 167 128 167 131 167	121 167 73 111 167 67 112 167 67 118 167 71 122 167 73 164 167 98 120 167 72 97.3 167 58 124 167 74 122 167 73 122 167 73 129 167 77 157 167 94 136 167 82 116 167 69 128 167 77 131 167 78	121 167 73 30-118 111 167 67 32-114 112 167 67 27-124 118 167 71 26-119 122 167 73 30-125 164 167 98 16-140 120 167 72 32-119 97.3 167 58 31-105 124 167 74 35-131 122 167 73 30-136 122 167 73 44-120 129 167 77 40-125 157 167 94 43-130 136 167 82 47-123 116 167 69 29-104 128 167 77 40-124 131 167 78 45-125	121 167 73 30-118 111 167 67 32-114 112 167 67 27-124 118 167 71 26-119 122 167 73 30-125 164 167 98 16-140 120 167 72 32-119 97.3 167 58 31-105 124 167 74 35-131 122 167 73 30-136 122 167 73 44-120 129 167 77 40-125 157 167 94 43-130 136 167 82 47-123 116 167 69 29-104 128 167 77 40-124 131 167 78 45-125

Jults flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/25/2006 12:14:31 p:\Stealth\Crystal.rpt\Form3LCS.rpt

QA/QC Report

≒ent:

Premier Environmental Services

ject Name :

IP Wiggins

Project Number: Sample Matrix:

202008.01

SOIL

Service Request: J0604558

Date Collected: 09/21/06

Date Received: 09/22/06

Date Extracted: NA

Date Analyzed: 09/22/06

Duplicate Summary Inorganic Parameters

Sample Name:

8W

Lab Code:

J0604558-001DUP

Test Notes:

Units: PERCENT

Basis: NA

Duplicate Relative **Analysis** Sample Sample Percent Result Analyte Method Result Result Average Difference Notes MRL Solids, Total 160.3 MOD 0.1 86 86 86 <1

Columbia Analytical Services, Inc.
Cooler Receipt and Preservation Form

Client:	Premier	Env.			Service Reque	st#	20	0014	586
Project:	Ip a	Virgins		*					
Cooler rece	ived on	9/22/06			and opened on	9/22/06	by	54	
COURIER:	CAS	UPS	FEDEX	DHL	CLIENT	Tracking #	8592	<i>3</i> 269	6020
1	Were cu	stody seals on	outside of co	ooler?			(Yes)	No	N/A
2	Were sea	als intact, sign	ed and dated	?			Ves	No	N/A
3	Were cu	stody papers p	properly filled	d out?			(Yes)	No	N/A
4	Temperatu	ıre of cooler(s) u	pon receipt	(Should l	pe 4 +/- 2 degrees C)	5.2			
5	Correct	Temperature?					Yes	No	N/A
6	Were Ice	e or Ice Packs	present				(Yes)	No	N/A
7	Did all b	ottles arrive i	n good condi	tion (un	broken, etc)?		Yes	No	N/A
8	Were all	bottle labels	complete (sar	nple ID	, preservation, et	cc)?	(Yes	No	N/A
9	Did all b	ottle labels an	d tags agree	with cus	stody papers?		(Ye)s	No	N/A
10	Were the	correct bottle	es used for th	e tests	indicated?		(Yes)	No	N/A
11	Were all o	f the preserved b	ottles received	with the a	appropriate preserva	tive?	Yes	No	NA
		additions noted belo	w	2/NaOH		H>12 HC	Cl pH<2		
12	Were all	samples recei	ived within a	nalysis l	holding times?		Yes	No	N/A
13	Were VOA	Vials checked f	or absence of ai	r bubbles	? If present, note be	low	Yes	No	MA
14	Where d	id the bottles	originate?				CAS)	Client	
	Sai	mple ID	Reagent	Manu	of. Lot # or CAS Chem ID	ml added	I	nititials	
					· · · · · · · · · · · · · · · · · · ·			<u></u>	
								····	
		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>							
							_		
								····	
				<u></u>					
Additional c	omments	and/or explar	nation of all c	liscrepa	ncies noted abov	re;			
				·····		····			
									· · · · · · · · · · · · · · · · · · ·
				·				······································	
Client appro	val to run	samples if di	screpancies r	noted:				Date	6

SR #: J O(OC) USPS in Its Note that pH is checked and meets the required pH criterion listed in the column heading unless otherwise noted on cooler receipt form.

28 29 30	100mL	ENC P Misc.	Sodium	-																																		_
0 1 20 1 90	160Z	ပ			-	-												-	-	-																		_
23 24 25	20Z 40Z	т-	000	GWI GWI								-					 -													-		_						_
21 22	11 11	9	당	<u> </u>																									_							_		_
18 191 20		d d	NO3 HNO3	7 ·					-		_				-	-	 			-		-					_						_					_
16 1 17	JmL 500mL 50	d d d d 5 5 d	H2SO4 HNO3	C.						+									+	 								_					_				-	_
15	mL 250mL 500	o o	HNO3																																			_
Bottle 13	L 250mL 250	В	ZnAcetate NaOH NaOH																	-			_															-
11 12	250mL 250m	РР	HNO3 NaOF													-			ļ	-			_					-	-		.							-
10 6	30mL 250mL	д д д д	H2SO4 HNO3							1						<u> </u>																						1
8 2	mL 125mL 25	d c	H2SO4 HN03				-			+						-			-		-																	_
9 9	mL125mL125	G P P	HCI H28	<u> </u>				-		+		_						-	-	-														-			_	
4 5	-	e G	Sodium Thiosulfate H2SO4			-			+	-										-																		
2 3	1	ອ ອ	오오																																			1
			VIV.	4			1	1	1_	Г	Т		 1	1	1	1	1	1	1	i	ľ	[Ī	T												Ì

www.caslab.com

CHAIN OF CUSTODY/LABORATOR ANALYSIS REQUEST FORM

8540 Baycenter Rd. • Jacksonville, FL 32256 • (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011

	ō	
	- 1	
_		
	_	
	Щ	
	~	
	AGE	

Preservative Key 0. NONE 1. HCL 2. HNO3 3. H2SO4 4. NãOH 6. MeOH 7. NaHSO4 HNO3 H2SO4 NaOH Zn. Acetate MeOH NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION RECEIVED BY ANALYSIS REQUESTED (Include Method Number and Container Preservative) Signature BILL TO IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report REPORT REQUIREMENTS . II. Results + QC Summaries (LCS, DUP, MS/MSD as required) III. Results + QC and Calibration RELINQUISHED BY Edata Yes . Results Only Signature TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD PRESERVATIVE Signature CUSTODY SEALS: Y NUMBER OF CONTAINERS RELINQUISHED BY Email Address

Seely @ Dre Mie (Offo-USa. COM MATRIX Marietta, GA 36002 30062 770-973-7395 9/21/00 1355 1405 SAMPLING DATE TIME 1415 82/1/20/1458 Sampler's Printed Name Tidue / Project Number 202008.01 Signature Project Manager

Company/Address

Company/Address

Company/Address

Company/Address

West Oak PLWY Blds. 100 Ste 106 Rush Analysis! LAB ID SAMPLE RECEIPT: CONDITION/COOLER TEMP: Phone # 770-973-2100 Sample / Ann SPECIAL INSTRUCTIONS/COMMENTS CLIENT SAMPLE ID \mathcal{Z} 3 94 See QAPP

Distribution: White - Return to Originator; Yellow - Lab Copy; Pink - Retained by Client

SCOC-01/12/06-0

Date/Time

Date/Time

Date/Time

Date/Time

Firm 7/22/06 0805

9/21/06 G:00PM

E

Printed Name

Printed Name

Printed Name

Printed Name

Client:

Premier Environmental Services

Service Request No.:

J0604596

Project:

Wiggins Site

Date Received:

9/26/06

Sample Matrix:

soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

Sample Receipt

1 soil sample was received for analysis at Columbia Analytical Services on 9/26/06. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 4±2°C upon receipt at the lab.

PAHs and PCP by GC-MS SIM

No problems were observed with this delivery group.

Data Qualifiers

Inorganic Data

- * The result is an outlier. See case narrative.
- # The control limit criteria are not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimated amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- Z Too many colonies were present (TNTC). The numeric value represents the filtration volume.
- i The MRL/MDL has been elevated due to matrix interference.
- X See case narrative.

Metals Data

- * The result is an outlier. See case narrative.
- # The control limit criteria are not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The result was determined by Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data

- * The result is an outlier. See case narrative.
- # The control limit criteria are not applicable. See case narrative.
- A The tentatively identified compound is a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria were exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides)
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Petroleum Hydrocarbon Specific

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance allowed in

drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to

the MDL.

Client: Project:

Premier Environmental Services

Wiggins Site

Service Request: J0604596

SAMPLE CROSS-REFERENCE

SAMPLE#

CLIENT SAMPLE ID

J0604596-001

12F

DATE

<u>TIME</u>

09/25/06

00:00

Analytical Results

Client:

Premier Environmental Services

Project:

Wiggins Site

Sample Matrix:

Soil

Service Request: J0604596

Date Collected: 09/25/2006 **Date Received:** 09/26/2006

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

12F

Lab Code:

J0604596-001

Extraction Method:

EPA 3550

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND	U	4.0	0.60	1	09/26/06	09/26/06	JWG0603002	
2-Methylnaphthalene	ND	U	4.0	1.8	1	09/26/06	09/26/06	JWG0603002	
1-Methylnaphthalene	ND	U	4.0	1.3	1	09/26/06	09/26/06	JWG0603002	
Acenaphthylene	ND	U	8.0	3.1	1	09/26/06	09/26/06	JWG0603002	***************************************
Acenaphthene	ND	U	8.0	3.2	1	09/26/06	09/26/06	JWG0603002	
Fluorene	ND	U	4.0	1.8	1	09/26/06	09/26/06	JWG0603002	
Pentachlorophenol	2.5	J	40	0.82	1	09/26/06	09/26/06	JWG0603002	
Phenanthrene	ND	U	8.0	3.9	1	09/26/06	09/26/06	JWG0603002	
Anthracene	ND	U	4.0	0.72	1	09/26/06	09/26/06	JWG0603002	
Fluoranthene	ND	U	4.0	0.69	1	09/26/06	09/26/06	JWG0603002	
Pyrene	ND	U	4.0	0.61	1	09/26/06	09/26/06	JWG0603002	
Chrysene	ND	U	4.0	0.56	1	09/26/06	09/26/06	JWG0603002	
Benz(a)anthracene	ND	U	4.0	0.59	1	09/26/06	09/26/06	JWG0603002	
Benzo(b)fluoranthene	ND	U	4.0	0.94	1	09/26/06	09/26/06	JWG0603002	
Benzo(k)fluoranthene	ND	U	4.0	0.76	. 1	09/26/06	09/26/06	JWG0603002	
Benzo(a)pyrene	ND	U	4.0	1.3	1	09/26/06	09/26/06	JWG0603002	
Indeno(1,2,3-cd)pyrene	ND	U	4.0	1.1	1	09/26/06	09/26/06	JWG0603002	
Dibenz(a,h)anthracene	ND	U	4.0	0.60	1	09/26/06	09/26/06	JWG0603002	
Benzo(g,h,i)perylene	ND	U	4.0	0.76	1	09/26/06	09/26/06	JWG0603002	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorobiphenyl	55	30-118	09/26/06	Acceptable	
2,4,6-Tribromophenol	71	34-166	09/26/06	Acceptable	
p-Terphenyl-d14	66	41-146	09/26/06	Acceptable	

Comments:

Printed: 09/27/2006 10:59:12 $p:\Stealth\Crystal.rpt\Form1m.rpt$

Merged

Form 1A - Organic

1 of 1

Analytical Results

Client:

Premier Environmental Services

Project:

Wiggins Site

Sample Matrix:

Soil

Service Request: J0604596

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

JWG0603002-4

Extraction Method:

EPA 3550

Analysis Method:

8270C SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND	U	3.4	0.51	1	09/26/06	09/26/06	JWG0603002	
2-Methylnaphthalene	ND	U	3.4	1.5	1	09/26/06	09/26/06	JWG0603002	
1-Methylnaphthalene	ND	U	3.4	1.1	1	09/26/06	09/26/06	JWG0603002	
Acenaphthylene	ND	U	6.8	2.6	1	09/26/06	09/26/06	JWG0603002	
Acenaphthene	ND	U	6.8	2.7	1 .	09/26/06	09/26/06	JWG0603002	
Fluorene	ND	U	3.4	1.5	1	09/26/06	09/26/06	JWG0603002	
Pentachlorophenol	ND	U	34	0.70	1	09/26/06	09/26/06	JWG0603002	
Phenanthrene	ND	U	6.8	3.3	1	09/26/06	09/26/06	JWG0603002	
Anthracene	ND	U	3.4	0.61	1	09/26/06	09/26/06	JWG0603002	
Fluoranthene	ND	U	3.4	0.59	1	09/26/06	09/26/06	JWG0603002	
Pyrene	ND	U	3.4	0.52	1	09/26/06	09/26/06	JWG0603002	
Chrysene	ND	U	3.4	0.48	1	09/26/06	09/26/06	JWG0603002	
Benz(a)anthracene	ND	U	3.4	0.50	1	09/26/06	09/26/06	JWG0603002	
Benzo(b)fluoranthene	ND	U	3.4	0.80	1	09/26/06	09/26/06	JWG0603002	
Benzo(k)fluoranthene	ND	\mathbf{U}	3.4	0.65	1	09/26/06	09/26/06	JWG0603002	
Benzo(a)pyrene	ND	U	3.4	1.1	1	09/26/06	09/26/06	JWG0603002	
Indeno(1,2,3-cd)pyrene	ND	U	3.4	0.87	1	09/26/06	09/26/06	JWG0603002	
Dibenz(a,h)anthracene	ND	U	3.4	0.51	1	09/26/06	09/26/06	JWG0603002	
Benzo(g,h,i)perylene	ND	U	3.4	0.65	1 .	09/26/06	09/26/06	JWG0603002	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorobiphenyl	57	30-118	09/26/06	Acceptable	
2,4,6-Tribromophenol	73	34-166	09/26/06	Acceptable	
p-Terphenyl-d14	68	41-146	09/26/06	Acceptable	

Comments:

Printed: 09/27/2006 10:59:15 p:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

7 Page 1 of 1

SuperSet Reference: RR13439

Analytical Report

Client:

Premier Environmental Services

Project Name:

Wiggins Site

Project Number: NA

Sample Matrix: SOIL

Analysis Method: 160.3 MOD

Service Request: J0604596

Date Collected: 09/25/06

Date Received: 09/26/06

Solids, Total

Units: PERCENT

Basis: NA

Test Notes:

Dilution Date/Time Result Sample Name Lab Code **MRL** MDL Factor Analyzed Result Notes

12F

J0604596-001

0.1

0.1

09/26/06 17:55

86

QA/QC Report

Client:

Premier Environmental Services

Project:

Wiggins Site

Sample Matrix:

Soil

Service Request: J0604596

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 3550

Analysis Method:

8270C SIM

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
12F	J0604596-001	55	71	66
Method Blank	JWG0603002-4	57	73	68
12FMS	JWG0603002-1	63	81	70
12FDMS	JWG0603002-2	67	87	73
Lab Control Sample	JWG0603002-3	66	83	71

Surrogate Recovery Control Limits (%)

Sur1 = 2-Fluorobiphenyl 30-118 Sur2 = 2,4,6-Tribromophenol 34-166 Sur3 = p-Terphenyl-d1441-146

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

 $p:\Stealth\Crystal.rpt\Form2.rpt$

QA/QC Report

Client:

Premier Environmental Services

Project:

Wiggins Site

Sample Matrix:

Soil

Service Request: J0604596

Date Extracted: 09/26/2006

Date Analyzed: 09/26/2006

Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

12F

Lab Code:

J0604596-001

Extraction Method:

Benzo(g,h,i)perylene

EPA 3550

Analysis Method:

8270C SIM

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: JWG0603002

	Sample	12FMS JWG0603002-1 Matrix Spike			12FDMS JWG0603002-2 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD 3 5 5 3 4 3 4 3 3 1 3 2 1 2 3	Limit
Naphthalene	ND	108	194	56	111	194	57	41-106	3	30
2-Methylnaphthalene	ND	122	194	63	128	194	66	45-111	5	30
1-Methylnaphthalene	ND	111	194	57	117	194	61	37-116	5	30
Acenaphthylene	ND	115	194	60	120	194	62	37-130	3	30
Acenaphthene	ND	120	194	62	125	194	65	27-123	4	30
Fluorene	ND	125	194	64	129	194	67	37-128	3	30
Pentachlorophenol	2.5	199	194	101	208	194	106	50-150	4	30
Phenanthrene	ND	126	194	65	130	194	67	13-148	3	30
Anthracene	ND	106	194	55	109	194	56	13-148	3	30
Fluoranthene	ND	129	194	67	134	194	69	39-138	3	30
Pyrene	ND	125	194	64	130	194	67	28-158	4	30
Chrysene	ND	126	194	65	130	194	67	27-135	3	30
Benz(a)anthracene	ND	137	194	71	139	194	72	12-159	1	30
Benzo(b)fluoranthene	ND	159	194	82	164	194	85	18-150	3	30
Benzo(k)fluoranthene	ND	141	194	73	138	194	71	10-177	2	30
Benzo(a)pyrene	ND	126	194	65	125	194	64	22-138	1	30
Indeno(1,2,3-cd)pyrene	ND	108	194	56	110	194	57	20-144	2	30
Dibenz(a,h)anthracene	ND	107	194	55	110	194	57	34-126	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

ND

98.2

194

51

101

194

52

10-174

3

30

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/27/2006 10:59:25 $p:\Stealth\Crystal.rpt\Form3DMS.rpt$

QA/QC Report

Client:

Premier Environmental Services

Project:

Wiggins Site

Sample Matrix:

Soil

Service Request: J0604596 **Date Extracted:** 09/26/2006

Date Analyzed: 09/26/2006

Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 3550

Analysis Method:

8270C SIM

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: JWG0603002

Lab Control Sample JWG0603002-3

	Lab Control Spike			%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Naphthalene	101	167	61	30-112	
2-Methylnaphthalene	112	167	67	30-118	
1-Methylnaphthalene	102	167	61	32-114	
Acenaphthylene	101	167	61	27-124	
Acenaphthene	106	167	63	26-119	
Fluorene	109	167	65	30-125	
Pentachlorophenol	167	167	100	16-140	
Phenanthrene	109	167	65	32-119	
Anthracene	90.0	167	54	31-105	
Fluoranthene	113	167	68	35-131	
Pyrene	108	167	65	30-136	
Chrysene	110	167	66	44-120	
Benz(a)anthracene	114	167	68	40-125	
Benzo(b)fluoranthene	137	167	82	43-130	
Benzo(k)fluoranthene	114	167	69	47-123	
Benzo(a)pyrene	103	167	62	29-104	
Indeno(1,2,3-cd)pyrene	101	167	60	40-124	
Dibenz(a,h)anthracene	103	167	62	45-125	
Benzo(g,h,i)perylene	92.7	167	56	42-121	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

RR13439

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

Client:	Premier Environmental Serv.				Service Reque	st#	50804596			
Project:	LP	Wiggins	**************************************				e de la companya de l La companya de la co	erronde on the co	• · · · · · · · · · · · · · · · · · · ·	
Cooler recei	ved on	9/26/	06		and opened on	9/26/06	by	56		
COURIER:	CAS	UPS	FEDEX	DHL	CLIENT	Tracking #	8592	3297	3553	
1	Were cus	stody seals c	n outside of co	oler?			(Yes)	No	N/A	
2	Were sea	ıls intact, sig	ned and dated?	,			Yes	No	N/A	
-3	Were cus	stody papers	properly filled	out?			(Yes)	No	N/A	
4	Temperatu	re of cooler(s)	upon receipt	(Should b	e 4 +/- 2 degrees C)	2.7	<u></u>	_		
5.	Correct	Γemperature	?				(Yes)	No	N/A	
6.	Were Ice	or Ice Pack	s present				(es)	No	N/A	
7	Did all b	ottles arrive	in good condit	ion (unl	oroken, etc)?		æs -	No	N/A	
8	Were all	bottle labels	s complete (san	nple ID,	preservation, et	cc)?	Yes	No	N/A	
9	Did all b	ottle labels a	and tags agree	with cus	tody papers?		Yes	No	N/A	
10	Were the	correct bot	tles used for the	e tests i	ndicated?		Yes	No	N/A	
11	Were all o	f the preserved	bottles received	vith the a	ppropriate preserva	tive?	Yes	No	(N/A	
12 13 14	Were VOA	•		•	nolding times? ? If present, note be	elow	Yes Yes CAS	No No Client	N/A	
				Manu	f. Lot#or CAS					
	Sai	mple ID	Reagent		Chem ID	ml added	In	ititials		

·										
				<u> </u>						
								· · · · · · · · · · · · · · · · · · ·		
en e										
 Additional c	omments	and/or expl	anation of all d	iscrena	ncies noted abov	/e:				
2 (ddittollar c	Ommons	and of expi	anation of an o	зогора	notes noted abov					
									· · · · · · · · · · · · · · · · · · ·	
							· · · · · · · · · · · · · · · · · · ·			
Client appro	val to rur	samples if	discrepancies r	ioted:			1.11.14.1	Dat ę :2		

904546

Note that pH is checked and meets the required pH criterion listed in the column heading unless otherwise noted on cooler receipt form.

Date: 9/26/26 Initial

X

28 29 30 5g 100mL Misc. ENC P Misc. Sodium Thiosuffate N/A N/A N/A 27 28 16oz 5g G ENC A/N | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 26 | 40mL | 125mL | 125mL | 250mL | 250 40mL 40mL G G Pres. Req pH NIA Sample # -Container

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

8540 Baycenter Rd. • Jacksonville, FL 32256 • (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011

PAGE / OF /

964,090 (# HS

Preservative Key

0. NONE

1. HCL

2. HNCJ

3. H2SQ4

4. NaOH

5. Zn. Acetate

6. MeOH

7. NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION Other . Printed Name IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration ANALYSIS REQUESTED (Include Method Number and RELINQUISHED BY Yes I. Results Only Edata Printed Name TURNAROUND REQUIREMENTS K RUSH (SURCHARGES APPLY) REQUESTED REPORT DATE REQUESTED FAX DATE 0 **PRESERVATIVE** илмвев об соитапиеры CUSTODY SEALS: OSECTYOPICM, e1COLD-USA.COM SAMPLING DATE TIME MATRIX FAX# 770-973-7395 Project Number 26 2008.01 ignature 36002 Rush Analysis 880 West Oak Pkwy 3/4, 100 Ste 106 LAB ID SAMPLE RECEIPT: CONDITION/COOLER TEMP: Marietta GA 770-973-2100 SPECIAL INSTRUCTIONS/COMMENTS - see Printed Name From Enu CLIENT SAMPLE ID Project Manager

Sow Seely
Company Address 77 See QAPP

Date/Time

9/26/06 0900

6:00PM

90/52/6

Date/Time

Appendix F

Photographs

Picture 1: Waste Soil Pile Prior to Excavation Work

Picture 2: Excavation of Waste Soil Pile

Picture 3: Excavation to Underlying Soil Layer

Picture 4: Loading of Waste Soil into Dump Trailer

Picture 5: Excavated area ready for backfill

Picture 6: Wall Sample Location of Native Underlying Soil

Picture 7: Placement of Backfill into Excavation

Picture 8: Cover & Berm of Excavated Waste Soil

Picture 9: Completed Backfilling of eastern side of Excavation

Picture 10: Completed backfilling of Waste Soil Excavation